


LASERGENE MOLECULAR BIOLOGY

Essential software for sequence analysis

MULTIPLE SEQUENCE ALIGNMENT

- Many popular multiple and pairwise sequence alignment methods, including MUSCLE, MAFFT, Clustal Omega, Clustal W, and ParaSail
- Whole genome alignment using MAUVE
- Customizable phylogenetic trees

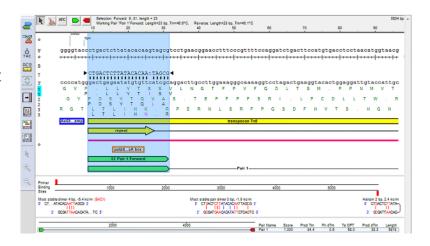
VIRTUAL CLONING AND PRIMER DESIGN

- Support for all major cloning methods, including Gibson Assembly, InFusion, Gateway, Multisite Pro Gateway, TOPO, TA Cloning and restriction enzyme techniques
- Design and customize primers and probes
- Create and share primer catalogs

SANGER SEQUENCE ASSEMBLY

- Assemble reads de novo or against one or more reference sequences
- Assess read alignment, coverage and SNPs
- Design sequencing primers to improve coverage

COMPREHENSIVE SEQUENCE ANALYSIS


- Accurate and fast sequence auto-annotation
- Sequence editing, including automated and batch editing
- Agarose gel simulations
- Gene discovery
- Integrated BLAST searching
- Publication quality graphics

Flexible licensing and pricing options for any lab

SeqBuilder Pro

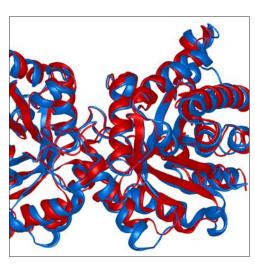
Just interested in the basics? Our flagship sequence editor lets you create sequence maps, perform virtual cloning, design primers, batch edit and annotate sequences, and much more!

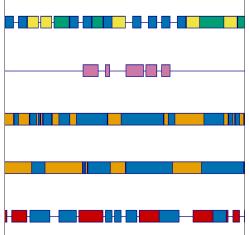
SeqBuilder Pro is included with Lasergene Molecular Biology, but can also be purchased separately, starting at **just \$99** for academic and government researchers, making it the perfect fit for your lab and budget.

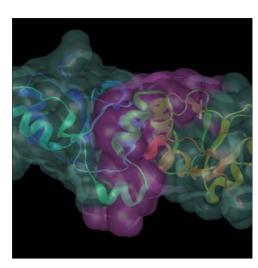
Complete Your DNASTAR Lasergene Software Package with our Genomics & Protein Applications

DNASTAR Lasergene includes tools for genomics and protein analysis that integrate seamlessly with the editing, analysis and visualization tools in Lasergene Molecular Biology. If you are working with next-generation sequencing or protein data, our full DNASTAR Lasergene package provides powerful and accurate results for all your analysis needs.

Contact Us


608.258.7420 tel 866.511.5090 toll free 0.808.234.1643 U.K. 0.800.182.4747 Germany


3801 Regent Street Madison, WI 53705 www.dnastar.com info@dnastar.com



LASERGENE PROTEIN

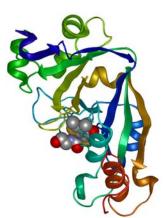
Software for protein structure and sequence analysis

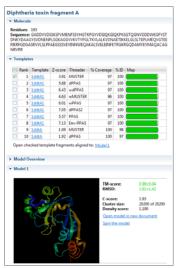
PROTEIN SEQUENCE ANALYSIS

- Utilize integrated views and analysis methods for sequence, secondary structure, and tertiary structure
- · Predict secondary structure characteristics

PROTEIN STRUCTURE ANALYSIS

- Predict B-cell epitopes
- Create molecular and solvent accessible surfaces to visualize predicted epitopes
- Align entire structures or selected regions
- Create publication quality graphics
- Visualize conformational changes of nearly 400 animated macromolecular structures


PROTEIN MODELING


- Predict 3D structure for any protein sequence
- Model antibody structures and identify antibody/antigen binding sites
- Predict protein function, ligand binding sites, and enzyme activity
- Model docking for any receptor and ligand pair
- Predict binding interactions and energy
- Create and model variants on protein structures
- Perform hot-spot scans and improve fold stability with protein design tools

Comprehensive tools for protein modeling

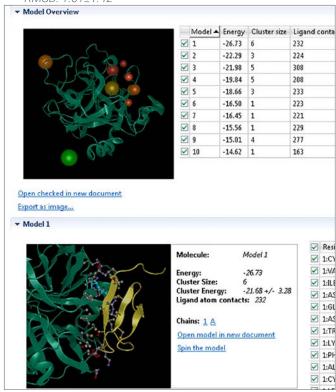
Protein Structure Prediction with NovaFold

- Based on the top-rated algorithm: I-TASSER
- Large molecule support, up to 2000 residues
- Predict protein structure, function, ligand binding, and enzyme activity
- Advanced user restraint controls & custom templates

NovaFold results

Protein-Protein Docking with NovaDock

- Based on SwarmDock, a high-resolution docking algorithm
- Model protein docking and binding interactions
- Explore protein flexibility during docking


Antibody Modeling with NovaFold Antibody

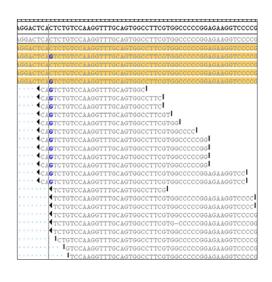
- Model Fv. Fab. VH. sdAb in minutes
- Search a library of antibody frameworks, or provide custom templates
- Ab initio loop modeling for H3 up to 15 residues
- Automated annotation of CDR loops

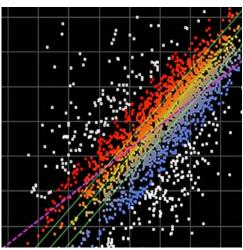
Protein Design with NovaDesign - NEW!

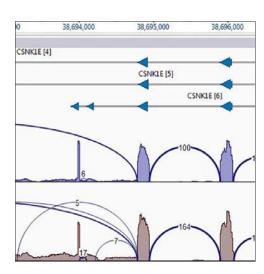
- Create, model, and analyze variants on structure
- Calculate energy changes of mutations
- Perform serine and alanine variant scans
- Improve protein fold stability with an automated workflow - COMING SOON!

NovaFold model with predicted ligand binding TM-Score: 0.99±0.04; RMSD: 1.61±1.42

NovaDock report


Contact Us


608.258.7420 tel 866.511.5090 toll free 0.808.234.1643 U.K. 0.800.182.4747 Germany 3801 Regent Street Madison, WI 53705 www.dnastar.com info@dnastar.com



LASERGENE GENOMICS

Supporting all major NGS workflows and technologies

RESEQUENCING AND GENOTYPING

- Reference guided alignment for any size project
- Cancer genomics
- Copy number variation (CNV) calculation
- Sanger validation of NGS assemblies and variant calls
- Variant detection accuracy >99%
- SNP to structure worklfow for modeling impact of mutations on protein structure

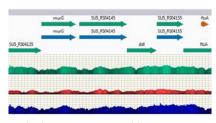
GENOME ASSEMBLY AND EDITING

- De novo genome assembly and contig editing
- Editing and gap closure for reference-guided alignments

TRANSCRIPTOME ANALYSIS

- De novo transcriptome assembly with automRNA annotation
- RNA-Seq gene expression analysis and statistics, including DESeq2 and EdgeR
- ChIP-Seq peak detection
- Microarray analysis
- miRNA discovery and quantification
- Combined analysis and visualization of gene expression data from multiple technologies

METAGENOMICS


- Alignment of metagenomic sequencing data to biome genomes and gene databases
- De novo assembly of novel sequences

Perform NGS assembly, alignment, and variant calling quickly and accurately

Accuracy and Speed Benchmarks

REFERENCE-GUIDED ALIGNMENT BENCHMARKS								
Data Set	Number of Samples	Input Data (Gbases)	Assembly Time	Per-Sample Assembly Time				
Salmonella Genome	18	7	69 minutes	2.7 minutes				
Human RNA-Seq	11	69	11 hours	55 minutes				
Human Exome	10	68	8 hours	49 minutes				
Human Genome	1	112	17 hours	17 hours				
Human Genome	3	335	43 hours	14 hours				

DE NOVO TRANSCRIPTOME ASSEMBLY BENCHMARKS							
Data Set	Number of Reads (Millions)	Transcripts	Average Transcript Length	Assembly Time			
Human	100	30,342	975	15 hours			
Water Bear	45	24,960	1,680	30 hours			

Multiple genome assemblies

Venn diagram used to compare SNPs, genes & peaks

Sequencing Platforms

Illumina Ion Torrent PacBlo

Operating Systems

Windows Macintosh

Hardware Requirements

16-32 GB RAM
Quad-Core 3 GHz processor
Two 1-4 TB hard drives*
*For ref-guided alignments on
local computers

ACCURACY COMPARISONS FOR HUMAN EXOME VARIANT ANALYSIS USING NA12878

Workflow	Sensitivity	Specificity	False Discovery Rate	True Positives	False Positives	False Negatives	Elapsed Time
Lasergene Genomics Suite	99.56%	99.999%	1.29%	15,272	200	67	1.3 hr
CLC Bio's Genomics Work- bench 8.0	99.18%	99.995%	7.41%	15,553	1,245	288	3.1 hr
Geneious 8.1	91.68%	99.995%	7.82%	14,827	1,257	1,346	2.9 hr
BWA Mapper / GATK Unified Genotyper	99.09%	99.999%	1.08%	15,161	166	139	6.0 hr
BWA Mapper / GATK Haplotype Base Caller	99.14%	99.999%	0.97%	15,168	149	132	6.3 hr

Contact Us

608.258.7420 tel 866.511.5090 toll free 0.808.234.1643 U.K. 0.800.182.4747 Germany 3801 Regent Street Madison, WI 53705 www.dnastar.com info@dnastar.com